Pulmonary Inflammation Is Regulated by the Levels of the Vesicular Acetylcholine Transporter
نویسندگان
چکیده
Acetylcholine (ACh) plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT), a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB) in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2) was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis.
منابع مشابه
Expression of a Putative Vesicular Acetylcholine Transporter Facilitates Quantal Transmitter Packaging
A putative vesicular acetylcholine transporter (VAChT) was overexpressed in developing Xenopus spinal neurons by injection of rat VAChT cDNA or synthetic mRNA into Xenopus embryos. This resulted in a marked increase in the amplitude and frequency of miniature excitatory postsynaptic currents at neuromuscular synapses, reflecting an over 10-fold increase in the vesicular packaging of acetylcholi...
متن کاملA Phosphorylation Site Regulates Sorting of the Vesicular Acetylcholine Transporter to Dense Core Vesicles
Vesicular transport proteins package classical neurotransmitters for regulated exocytotic release, and localize to at least two distinct types of secretory vesicles. In PC12 cells, the vesicular acetylcholine transporter (VAChT) localizes preferentially to synaptic-like microvesicles (SLMVs), whereas the closely related vesicular monoamine transporters (VMATs) localize preferentially to large d...
متن کاملPreferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appe...
متن کاملAnalysis of point mutants in the Caenorhabditis elegans vesicular acetylcholine transporter reveals domains involved in substrate translocation.
Cholinergic neurotransmission depends upon the regulated release of acetylcholine. This requires the loading of acetylcholine into synaptic vesicles by the vesicular acetylcholine transporter (VAChT). Here, we identify point mutants in Caenorhabditis elegans that map to highly conserved regions of the VAChT gene of Caenorhabditis elegans (CeVAChT) (unc-17) and exhibit behavioral phenotypes cons...
متن کاملSorting of Vesicular Monoamine Transporter 2 to the Regulated Secretory Pathway Confers the Somatodendritic Exocytosis of Monoamines
The release of monoamine neurotransmitters from cell bodies and dendrites has an important role in behavior, but the mechanism (vesicular or non vesicular) has remained unclear. Because the location of vesicular monoamine transporter 2 (VMAT2) defines the secretory vesicles capable of monoamine release, we have studied its trafficking to assess the potential for monoamine release by exocytosis....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015